Published in

American Association for the Advancement of Science, Science, 6457(365), p. 1036-1040, 2019

DOI: 10.1126/science.aax7864

Links

Tools

Export citation

Search in Google Scholar

Atomically precise, custom-design origami graphene nanostructures

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Precisely folding nanographene Graphene nanostructures that would result from folding or rolling graphene monolayers or bilayers have been predicted to have a number of interesting electronic properties, but control over such folding processes has been limited. Chen et al. used a scanning tunneling microscope tip to fold and unfold graphene nanoislands etched on graphite surfaces at low temperatures (4 kelvin). The fold angle could be precisely controlled to create different twist angles in bilayer graphene and a tubelike edge in folded graphene. They also folded 5 ring–7 ring defects and explored this heterojunction with scanning tunneling spectroscopy. Science , this issue p. 1036