Links

Tools

Export citation

Search in Google Scholar

Examining the Impact of Nitrous Acid Chemistry on Ozone and PM over the Pearl River Delta Region

Journal article published in 2012 by Rui Zhang, Golam Sarwar, Jimmy C. H. Fung, Alexis K. H. Lau ORCID, Yuanhang Zhang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The impact of nitrous acid (HONO) chemistry on regional ozone and particulate matter in Pearl River Delta region was investigated using the community multiscale air quality (CMAQ) modeling system and the CB05 mechanism. Model simulations were conducted for a ten-day period in October 2004. Compared with available observed data, the model performance for NOx, SO2, PM10, and sulfate is reasonably good; however, predictions of HONO are an order of magnitude lower than observed data. The CB05 mechanism contains several homogenous reactions related to HONO. To improve the model performance for HONO, direct emissions, two heterogeneous reactions, and two surface photolysis reactions were incorporated into the model. The inclusion of the additional formation pathways significantly improved simulated HONO compared with observed data. The addition of HONO sources enhances daily maximum 8-hour ozone by up to 6 ppbV (8%) and daily mean PM2.5 by up to 17 ug/m3 (12%). They also affected ozone control strategy in Pearl River Delta region.