Published in

MDPI, Molecules, 11(23), p. 2818, 2018

DOI: 10.3390/molecules23112818

Links

Tools

Export citation

Search in Google Scholar

Chemical and Biological Evaluation of Essential Oils from Cardamom Species

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

To highlight the importance of the spices in the Mediterranean diet, the aim of the paper was to study the essential oil compositions and to clarify the potential differences in the biological activities of the three cardamom species. In the study, we compared the phytochemical profiles and biological activities of essential oils from Elettaria cardamomum, Aframomum corrorima and Amomum subulatum. The oils were analyzed using the GC and GC/MS techniques and were mainly constituted of the oxygenated monoterpenes which represents 71.4%, 63.0%, and 51.0% of all compounds detected in E. cardamomum, A. corrorima and A. subulatum essential oils, respectively, 1,8-cineole was the main common compound between the tree tested volatile oil. The essential oils showed significant antimicrobial activity against Gram-positive and Gram-negative microorganisms tested especially the fungal strains. The Ethiopian cardamom was the most active essential oil with fungal growth inhibition zone ranging from 12.67 to 34.33 mm, MICs values ranging from 0.048 to 0.19 mg/mL, and MBCs values from 0.19 to 1.75 mg/mL. The three tested essential oils and their main component (1,8-cineole) significantly increased the production of elastase and protease production, and motility in P. aeruginosa PAO1 in a dose dependent manner. In fact, at 10 mg/mL concentration, the three essential oils showed more than 50% of inhibition of elastolytic and proteolytic activities in P. aeruginosa PAO1. The same oils inhibited also the violacein production in C. violaceum strain. It was also noticed that at high concentrations, the A. corrorima essential oil significantly inhibited the germination of radish. A thorough knowledge of the biological and safety profiles of essential oils can produce applications of economic importance.