Published in

International Union of Crystallography, Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 1(74), p. 12-23

DOI: 10.1107/s2052520617013038

Links

Tools

Export citation

Search in Google Scholar

X-ray, dielectric, piezoelectric and optical analyses of a new nonlinear optical 8-hydroxyquinolinium hydrogen squarate crystal

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The 1:1 complex of 8-hydroxyquinoline with squaric acid has been characterized using single-crystal X-ray diffraction, UV–vis spectroscopy, density functional theory (DFT) calculations, and photoluminescence, dielectric, piezoelectric and second-harmonic generation (SHG) studies. The title compound (8-hydroxyquinolinium hydrogen squarate; HQS) contains one protonated 8-hydroxyquinoline cation (C9H8NO+) and one hydrogen squarate mono-anion (C4HO4 ). All the intermolecular hydrogen-bonding interactions present in the HQS crystal structure are analyzed by three-dimensional molecular Hirshfeld surface analysis and their relative contributions are determined from two-dimensional fingerprint plots. The structure of C9H8NO+·C4HO4 molecular complex has been optimized at the DFT/B3LYP/6-31G(d,p) level. The UV–vis spectroscopic data calculated by time-dependent density functional theory are compared with the experimental data. The LUMO+1, LUMO, HOMO and HOMO−1 energy values, their shapes and energy gaps are calculated using the B3LYP/6-31G(d,p) level of theory. The HQS material exhibits high SHG output (2.6 times of that of potassium dihydrogen phosphate), high photoluminescence emission centred at 474 nm and a piezoelectric charge coefficient of 3 pC N−1. Henceforth, HQS can serve as an alternative potential candidate for multifunctional nonlinear optically active and piezoelectric crystals.