Published in

Rockefeller University Press, Journal of Experimental Medicine, 10(215), p. 2617-2635, 2018

DOI: 10.1084/jem.20180300

Links

Tools

Export citation

Search in Google Scholar

Rapid CLIP dissociation from MHC II promotes an unusual antigen presentation pathway in autoimmunity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A number of autoimmunity-associated MHC class II proteins interact only weakly with the invariant chain–derived class II–associated invariant chain peptide (CLIP). CLIP dissociates rapidly from I-Ag7 even in the absence of DM, and this property is related to the type 1 diabetes–associated β57 polymorphism. We generated knock-in non-obese diabetic (NOD) mice with a single amino acid change in the CLIP segment of the invariant chain in order to moderately slow CLIP dissociation from I-Ag7. These knock-in mice had a significantly reduced incidence of spontaneous type 1 diabetes and diminished islet infiltration by CD4 T cells, in particular T cells specific for fusion peptides generated by covalent linkage of proteolytic fragments within β cell secretory granules. Rapid CLIP dissociation enhanced the presentation of such extracellular peptides, thus bypassing the conventional MHC class II antigen-processing pathway. Autoimmunity-associated MHC class II polymorphisms therefore not only modify binding of self-peptides, but also alter the biochemistry of peptide acquisition.