Published in

International Union of Crystallography, Journal of Synchrotron Radiation, 4(25), p. 989-997, 2018

DOI: 10.1107/s1600577518005325

Links

Tools

Export citation

Search in Google Scholar

Fluorescence-detected XAS with sub-second time resolution reveals new details about the redox activity of Pt/CeO2 catalyst

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A setup for fluorescence-detected X-ray absorption spectroscopy (XAS) with sub-second time resolution has been developed. This technique allows chemical speciation of low-concentrated materials embedded in highly absorbing matrices, which cannot be studied using transmission XAS. Using this setup, the reactivity of 1.5 wt% Pt/CeO2 catalyst was studied with 100 ms resolution during periodic cycling in CO- and oxygen-containing atmospheres in a plug-flow reactor. Measurements were performed at the Pt L 3- and Ce L 3-edges. The reactivity of platinum and cerium demonstrated a strong correlation. The oxidation of the catalyst starts on the ceria support helping the oxidation of platinum nanoparticles. The new time-resolved XAS setup can be applied to various systems, capable of reproducible cycling between different states triggered by gas atmosphere, light, temperature, etc. It opens up new perspectives for mechanistic studies on automotive catalysts, selective oxidation catalysts and photocatalysts.