Published in

Nature Research, Nature Communications, 1(9), 2018

DOI: 10.1038/s41467-018-05163-y

Links

Tools

Export citation

Search in Google Scholar

Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractNitrogen doping of graphene significantly affects its chemical properties, which is particularly important in molecular sensing and electrocatalysis applications. However, detailed insight into interaction between N-dopant and molecules at the atomic scale is currently lacking. Here we demonstrate control over the spin state of a single iron(II) phthalocyanine molecule by its positioning on N-doped graphene. The spin transition was driven by weak intermixing between orbitals with z-component of N-dopant (pz of N-dopant) and molecule (dxz, dyz, dz2) with subsequent reordering of the Fe d-orbitals. The transition was accompanied by an electron density redistribution within the molecule, sensed by atomic force microscopy with CO-functionalized tip. This demonstrates the unique capability of the high-resolution imaging technique to discriminate between different spin states of single molecules. Moreover, we present a method for triggering spin state transitions and tuning the electronic properties of molecules through weak non-covalent interaction with suitably functionalized graphene.