Published in

American Physiological Society, American Journal of Physiology - Heart and Circulatory Physiology, 4(277), p. H1546-H1552, 1999

DOI: 10.1152/ajpheart.1999.277.4.h1546

Links

Tools

Export citation

Search in Google Scholar

Role of cytochrome P-450 4A in oxygen sensing and NO production in rat cremaster resistance arteries

Journal article published in 1999 by Cornel J. M. Kerkhof, Erik N. T. P. Bakker ORCID, Pieter Sipkema
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The role of arachidonic acid metabolism and nitric oxide (NO) in hypoxia-induced changes of vascular tone was investigated in first-order cannulated rat cremaster muscle resistance arteries. Spontaneous tone reduced arterial diameter from 179 ± 2 μm (fully dilated) to 98 ± 3 μm under normoxia ([Formula: see text] = 150 mmHg). Hypoxia ([Formula: see text] 5–10 mmHg) had no significant effect on arterial diameter under conditions of spontaneous tone. The effect of hypoxia was not changed after blockade of cyclooxygenase with indomethacin or after blockade of lipoxygenase with nordihydroguaiaretic acid. However, after partial blockade of cytochrome P-450 4A enzymes with 17-octadecynoic acid (17-ODYA), hypoxia increased the diameter by 65 ± 6 μm ( P < 0.05). This increase could be inhibited by NG-nitro-l-arginine (l-NNA) or 20-hydroxyeicosatetraenoic acid (20-HETE). 17-ODYA induced a concentration-dependent dilation under normoxia, which could be blocked by endothelium removal orl-NNA. 17-ODYA did not increase smooth muscle sensitivity to NO. We conclude that, under conditions of spontaneous tone and in the absence of luminal flow, hypoxia (5–10 mmHg) has no effect on the diameter of resistance arteries from the rat cremaster muscle. Inhibition of the cytochrome P-450 4A pathway of arachidonic acid metabolism under normoxia induces NO production by the endothelium. Hypoxia induces an NO-mediated dilation when cytochrome P-450 4A enzymes are partially inhibited.