Published in

Copernicus Publications, Proceedings of IAHS, (379), p. 387-392, 2018

DOI: 10.5194/piahs-379-387-2018

Links

Tools

Export citation

Search in Google Scholar

Continental and marine surficial water – groundwater interactions: the case of the southern coastland of Venice (Italy)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Understanding the continental-marine surficial water–groundwater exchanges in transitional coastal environments is really challenging at large scale. It requires an image of the saltwater–freshwater relationship which is difficult to be obtained especially in wetlands, lagoons, and marine areas. This study is focused on the coastland of the southern Venice lagoon – northern Po river delta (Italy), a precarious environment subject to both natural changes and anthropogenic pressures. Here, saltwater severely affects farmlands and aquifers. We used an airborne electromagnetics (AEM) survey with the goal of characterizing the continental and marine surficial water–groundwater interactions in such coastal region. The AEM survey allowed depicting a clear image of the fresh water–saltwater occurrence in shallow aquifers along mainland-lagoon – littoral-sea profiles, up to 20 km long. The results reveal that continental groundwater is located in the lagoon subsoil below a 10–20 m thick saline aquifer and extends down to 70 m depth. The whole low-lying farmland located south of the lagoon margin is seriously affected by saltwater contamination, which occurs from a few to about 50 m depth. The integrated analysis of AEM, seismic and borehole data shows that buried morpho-geological structures, such as paleo-channels and over-consolidated clay units control the saline contamination from the lagoon and the sea into the coastal aquifer system.