Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 9(19), p. 6007-6034, 2019

DOI: 10.5194/acp-19-6007-2019

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, p. 1-38

DOI: 10.5194/acp-2018-724

Links

Tools

Export citation

Search in Google Scholar

Lagrangian simulations of the transport of young air masses to the top of the Asian monsoon anticyclone and into the tropical pipe

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. We have performed backward trajectory calculations and simulations with the three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS) for two succeeding monsoon seasons using artificial tracers of air mass origin. With these tracers we trace back the origin of young air masses (age <6 months) at the top of the Asian monsoon anticyclone and of air masses within the tropical pipe (6 months < age <18 months) during summer 2008. The occurrence of young air masses (<6 months) at the top of the Asian monsoon anticyclone up to ∼460 K is in agreement with satellite measurements of chlorodifluoromethane (HCFC-22) by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument. HCFC-22 can be considered as a regional tracer for continental eastern Asia and the Middle East as it is mainly emitted in this region. Our findings show that the transport of air masses from boundary layer sources in the region of the Asian monsoon into the tropical pipe occurs in three distinct steps. First, very fast uplift in “a convective range” transports air masses up to 360 K potential temperature within a few days. Second, air masses are uplifted from about 360 K up to 460 K within “an upward spiralling range” within a few months. The large-scale upward spiral extends from northern Africa to the western Pacific. The air masses are transported upwards by diabatic heating with a rate of up to 1–1.5 K per day, implying strong vertical transport above the Asian monsoon anticyclone. Third, transport of air masses occurs within the tropical pipe up to 550 K associated with the large-scale Brewer–Dobson circulation within ∼1 year. In the upward spiralling range, air masses are uplifted by diabatic heating across the (lapse rate) tropopause, which does not act as a transport barrier, in contrast to the extratropical tropopause. Further, in the upward spiralling range air masses from inside the Asian monsoon anticyclone are mixed with air masses convectively uplifted outside the core of the Asian monsoon anticyclone in the tropical adjacent regions. Moreover, the vertical transport of air masses from the Asian monsoon anticyclone into the tropical pipe is weak in terms of transported air masses compared to the transport from the monsoon anticyclone into the northern extratropical lower stratosphere. Air masses from the Asian monsoon anticyclone (India/China) contribute a minor fraction to the composition of air within the tropical pipe at 550 K (6 %), and the major fractions are from Southeast Asia (16 %) and the tropical Pacific (15 %).