Published in

Nature Research, Nature Protocols, 6(8), p. 1114-1124, 2013

DOI: 10.1038/nprot.2013.068

Links

Tools

Export citation

Search in Google Scholar

Evaluation of the pathogenesis and treatment of Mycobacterium marinum infection in zebrafish

Journal article published in 2013 by Kevin Takaki, J. Muse Davis, Kathryn Winglee ORCID, Lalita Ramakrishnan
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mycobacterium marinum infected zebrafish are used to study tuberculosis pathogenesis, as well as for antitubercular drug discovery. The small size of zebrafish larvae coupled with their optical transparency allows for rapid analysis of bacterial burdens and host survival in response to genetic and pharmacological manipulations of both mycobacteria and host. Automated fluorescence microscopy and automated plate fluorimetry (APF) are coupled with facile husbandry to facilitate large-scale, repeated analysis of individual infected fish. Both methods allow for in vivo screening of chemical libraries, requiring only 0.1 μmol of drug per fish to assess efficacy; they also permit a more detailed evaluation of the individual stages of tuberculosis pathogenesis. Here we describe a 16-h protocol spanning 22 d, in which zebrafish larvae are infected via the two primary injection sites, the hindbrain ventricle and caudal vein; this is followed by the high-throughput evaluation of pathogenesis and antimicrobial efficacy.