Published in

Oxford University Press, Bioinformatics, 23(34), p. 4115-4117, 2018

DOI: 10.1093/bioinformatics/bty485

Links

Tools

Export citation

Search in Google Scholar

SONiCS: PCR stutter noise correction in genome-scale microsatellites

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Motivation Massively parallel capture of short tandem repeats (STRs, or microsatellites) provides a strategy for population genomic and demographic analyses at high resolution with or without a reference genome. However, the high Polymerase Chain Reaction (PCR) cycle numbers needed for target capture experiments create genotyping noise through polymerase slippage known as PCR stutter. Results We developed SONiCS—Stutter mONte Carlo Simulation—a solution for stutter correction based on dense forward simulations of PCR and capture experimental conditions. To test SONiCS, we genotyped a 2499-marker STR panel in 22 humpback dolphins (Sousa sahulensis) using target capture, and generated capillary-based genotypes to validate five of these markers. In these 110 comparisons, SONiCS showed a 99.1% accuracy rate and a 98.2% genotyping success rate, miscalling a single allele in a marker with low sequence coverage and rejecting another as un-callable. Availability and implementation Source code and documentation for SONiCS is freely available at https://github.com/kzkedzierska/sonics. Raw read data used in experimental validation of SONiCS have been deposited in the Sequence Read Archive under accession number SRP135756. Supplementary information Supplementary data are available at Bioinformatics online.