Published in

American Association for the Advancement of Science, Science, 6396(360), 2018

DOI: 10.1126/science.aat4422

Links

Tools

Export citation

Search in Google Scholar

Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Imaging dopamine release in the brain Neuromodulator release alters the function of target circuits in poorly known ways. An essential step to address this knowledge gap is to measure the dynamics of neuromodulatory signals while simultaneously manipulating the elements of the target circuit during behavior. Patriarchi et al. developed fluorescent protein–based dopamine indicators to visualize spatial and temporal release of dopamine directly with high fidelity and resolution. In the cortex, two-photon imaging with these indicators was used to map dopamine activity at cellular resolution. Science , this issue p. eaat4422