Published in

Springer Nature [academic journals on nature.com], Translational Psychiatry, 1(8), 2018

DOI: 10.1038/s41398-018-0117-7

Links

Tools

Export citation

Search in Google Scholar

Low-frequency and rare variants may contribute to elucidate the genetics of major depressive disorder

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMajor depressive disorder (MDD) is a common but serious psychiatric disorder with significant levels of morbidity and mortality. Recent genome-wide association studies (GWAS) on common variants increase our understanding of MDD; however, the underlying genetic basis remains largely unknown. Many studies have been proposed to explore the genetics of complex diseases from a viewpoint of the “missing heritability” by considering low-frequency and rare variants, copy-number variations, and other types of genetic variants. Here we developed a novel computational and statistical strategy to investigate the “missing heritability” of MDD. We applied Hamming distance on common, low-frequency, and rare single-nucleotide polymorphism (SNP) sets to measure genetic distance between two individuals, and then built the multi-dimensional scaling (MDS) pictures. Whole-exome genotyping data from a Los Angeles Mexican-American cohort (203 MDD and 196 controls) and a European-ancestry cohort (473 MDD and 497 controls) were examined using our proposed methodology. MDS plots showed very significant separations between MDD cases and healthy controls for low-frequency SNP set (P value < 2.2e−16) and rare SNP set (P value = 7.681e−12). Our results suggested that low-frequency and rare variants may play more significant roles in the genetics of MDD.