Published in

Oxford University Press, Genetics, 1(206), p. 299-314, 2017

DOI: 10.1534/genetics.117.201491

Links

Tools

Export citation

Search in Google Scholar

Regulation of Hyphal Growth and N-Acetylglucosamine Catabolism by Two Transcription Factors inCandida albicans

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The amino sugar N-acetylglucosamine (GlcNAc) is increasingly recognized as an important signaling molecule in addition to its well-known structural roles at the cell surface. In the human fungal pathogen Candida albicans, GlcNAc stimulates several responses including the induction of the genes needed for its catabolism and a switch from budding to filamentous hyphal growth. We identified two genes needed for growth on GlcNAc (RON1 and NGS1) and found that mutants lacking these genes fail to induce the genes needed for GlcNAc catabolism. NGS1 was also important for growth on other sugars, such as maltose, but RON1 appeared to be specific for GlcNAc. Both mutants could grow on nonfermentable carbon sources indicating that they do not affect mitochondrial function, which we show is important for growth on GlcNAc but not for GlcNAc induction of hyphal morphogenesis. Interestingly, both the ron1Δ and ngs1Δ mutants were defective in forming hyphae in response to GlcNAc, even though GlcNAc catabolism is not required for induction of hyphal morphogenesis. The ron1Δ mutant showed a partial defect in forming hyphae, which was surprising since it displayed an elevated level of filamentous cells under noninducing conditions. The ron1Δ mutant also displayed an elevated basal level of expression of genes that are normally upregulated during hyphal growth. Consistent with this, Ron1 contains an Ndt80-like DNA-binding domain, indicating that it regulates gene expression. Thus, Ron1 is a key new component of the GlcNAc response pathway that acts as both an activator and a repressor of hyphal morphogenesis.